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Hydrodynamic aspects of free surface Rows are  discussed within the franiework of  Orchard's 
theory of leveling in order to assess the validity of theories based o n  a thermodynamic 
analysis such as Frenkel's theory of sintering. Principal conclusions are  that (i) there is 
hydrodynamic justification for the viscous dissipation function assumed by Fienkel ;  
(ii) in spreading one  needs to take into account a possible hydrodynamic retardation, 
(iii) terminal spreading rates can be accounted for by the theory of Smith, which considers 
only gravitational forces; (iv) further useful extensions of the hydrodynamic theory allow 
for analysis of the influence o f  viscoelasticity and  heterogeneity o f  the fluid o n  such free 
surface Rows. 

I NTRO D U CTlO N 

The flow during sintering, spreading and leveling of fluids will be discussed 
within their common hydrodynamic framework of free surface flows. These 
flows are characterized by the fact that the surface tension forces, which 
define a surface state of stress, induce a change of shape of the material. 
It is useful to treat these flows jointly since in practice one observes frequently 
the combined effects of sintering, spreading and leveling as for instance in 
powder-coating, a process whereby a powder is applied to a substrate; on 
heating the powder melts, covers the substrate by spreading and sintering, 
the resulting uneven liquid film levels, leaving a more or less smooth adherent 
film on cooling. 

t This paper was presented at the S)wpo.osiirm on Kecoif Adimrrs in Adhc.~ion during 
the 162nd National American Chemical Society Meeting, September, 1971. 
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2 48 H. VANOENE 

Two aspects of these flows are of particular interest: 

(i) what is the rate of each individual flow 
(ii) what are the bulk motions of the material during these flows. 

The rate of flow is usually obtained from a measurement of the change of 
shape of the material. This is therefore determined by the motion of the 
bounding surface itself. The bulk motions are determined by the streamlines 
and will provide information about the material transport. It  turns out, 
that theoretically in many circumstances the surface velocities are more 
easily obtained than the bulk streamlines. The latter aspect is, however, 
of considerable importance when the fluid itself is heterogeneous. 

In the literature two distinct approaches have been used to treat these 
free surface flows in a quantitative fashion: 

I. A thermodynamic a p p r ~ a c h ' ~ ~ J  

A representative example of which is Frenkel's theory of sintering'. In  this 
theory the work required for a change in shape of the material is calculated 
from the decrease in surface free energy. This work is dissipated by viscous 
flow. The magnitude of the energy dissipation must, however, be calculated 
from an assumed shear field. The quantitative predictions of these theories 
depend therefore on the correctness of this choice. 

II. A hydrodynamic approach4 

In these theories the decrease in surface free energy is ignored. Instead, one 
chooses a particular simple free surface flow: the flow of a liquid film over 
a horizontal or inclined substrate. The stability of this flow to a disturbance 
of the free surface, which may take the form of a surface corrugation, may 
now be studied. The damping of the surface corrugation can be taken as a 
measure of the rate of leveling. This simple hydrodynamic model has proven 
itself to be a very powerful tool for the detailed analysis of the effect of a 
change in surface properties such as surface elasticity, surface viscosity, 
surface tension gradients, imposed gradients of mass transfer and tempera- 
tures and bulk viscoelasticity6 on the damping or amplification of the 
surface corrugation. 

In this article the known hydrodynamic solutions will be analyzed further 
in order to clarify the hydrodynamic assumptions made in thermodynamic 
type theories. In the light of this analysis, good agreement between recent 
experimental investigations of sintering and drop spreading and theory can 
be achieved. Secondly, the hydrodynamic discussion will be extended in 
order to explore the extent of bulk flow when a layer of finite thickness, 
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SINTERING, SPREADING, LEVELING OF F L U I D S  249 

which differs in viscosity and  surface tension, from the bulk, covers the 
original corrugated liquid film. 

THEORY 

I. Thermodynamic approach 

The model first proposed by Frenkel’ will be used. Following Manson and 
co-workers’, however, no geometrical approximations will be made other 
than those inherent in the Frenkel model, which treats the neck region as 
two interpenetrating spheres. The model is illustrated in Figure 1 .  The 

FRENKEL MODEL 

FIGURE 1 
represents the required amount of shrinkage. 

Frenkel model, to scale. The distance between the center dot and cross 

results may be summarized a s  follows: 

current radius a of the spheres: 
(i) the constant total volume condition, provides an expression for the 

a = ~ , 4 ’ / ~ ( 2  - u ) - ~ / ~ ( I  + u ) - ” ~  (1) 
where u = I - cos 8 and a, is the initial radius of the sphere. 

(ii) the work per unit time done by the surface tension forces is given by: 
dAS d A S d u  dU 

y - = y ~ - = 4 n ~ , ~ y 4 ~ ’ ~ ( 1  - u)( l  + ~ ) - - * ’ ~ ( 2  - t r ) - 4 / 3  - 
d t  du dt d l  

(2) 

where AS is the decrease in surface area, and y the surface tension. 
(iii) the viscous energy dissipation is calculated from the rate of change of 

the extent of flow, reduced by the value of the current radius. The  “velocity- 
gradient” q is therefore: 

1 dau dl4 
q = -  - = (2  - u ) - ’ ( l  + 1,)-’(2 + u ) -  

a dt d t  

and the energy dissipation: 

(3) 
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250 H. VANOENE 

(iv) equating the work/unit time done by the surface tension forces and 
the viscous energy dissipation yields: 

(5) 

which expression may be integrated numerically. Manson and Nippert’ simp- 
lify Eq. 5 somewhat by noting that (2 + u ) ~  = 4(1 + Ju)’ = 4(1 + u + +u2) ,  
neglecting iu’  inside this bracket gives: 

du 
d t  
- = ~ ( ) J / U , ~ ) ( L  - u ) [ ( 2  - u)/2(1 + u)]2’3  

for small 0, u = 1 - cos 0 M 36’ hence: 

O 2  = t ( r / w ) t  (7) 
which is the original Frenkel equation. As implicit in Frenkel’s paper and 
emphasized by Manson and co-workers, Eq. 7 is valid only for 0 < 30”. 
Since most experimental data fall outside this range a valid experimental 
comparison can only be made with the integrated expression. Strella3 pro- 
posed recently a slightly different set of equations. He uses a different choice 
of “velocity-gradient” (the reduced rate of change of the total distance to 
the interface) and takes the energy dissipation to be given by 

dt  

where V is the volume of the droplet. When the factor 3 is replaced by the 
more hydrodynamically motivated factor of 2, Strella’s expression for the 
sintering rate becomes : 

(1 - u )  1 - u 1 / 3  (g) = i(y/qa,)42/3 - - 
( 2 - u )  0 2 - u  

When the factor of three is retained, the front factor $ should be replaced 
by 4. From the assumptions made by Strella, it appears that his formula 
may be more applicable to the sintering of one sphere to a flat plate than the 
sintering of two spheres. It is seen that the relative success of this approach 
lies in the fact that: 

(i) the change in surface area may be calculated without approximation 
(ii) the work done by the surface forces may be related to a surface 

(iii) the V ~ S C O L I S  energy dissipation is proportional to the square of the 
velocity 

surface velocity. 
This last point, however, needs hydrodynamic justification. 
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SINTERING. SPREADING, LEVELING OF FLUIDS 25 1 

II. Hydrodynamic theory 

For the present purposes, it is sufficient to restrict the analysis to the surface 
leveling of a viscous, horizontal film, of finite thickness but infinite in extent 
in the other directions. The problem reduces therefore to two dimensions, 
which simplifies the subsequent analysis immensely. As stated in this form, 
Orchard’s’ solution is directly applicable. The problem itself, however, has 
a long history in the guise of the stability analysis of free surface flows and 
in connection with waves on I i q ~ i d s ~ . ~ .  

Since the analysis may be carried out in two dimensions, the hydrodynamic 
equations reduce to the problem of finding a stream function. The boundary 
conditions are:  

(i) at  the free surface the velocity gradient vanishes 
(ii) at the fixed surface the velocities vanish. 

When the free surface’s elevation, around the mean surface y = 0, is expressed 
in terms of a complex Fourier series: 

n =  t I) 

S(x) = i C u,, exp (i.k,,x) 
n - m  

(9) 

where k,  is the wave number 2n/A,,; the stream function expressed as: 
it t m 

41 = C exp ( ik , .x )  F,,(J~) (10) 
I 1  - m 

which implies that the velocities are given by: ZI = (?g/dy and u = -&$/dx, 
the following differential equation results: 

This differential equation is central to the stability analysis. Omitting further 
details, it is found that for a particular Fourier component k ,  the stream- 
function is given by: 

(12) 4 = eikX(A cosh ( k y )  + B sinh ( k y )  + CY cosh (kj’)  + Dy sinh ( ky ) )  

where the constants are 

B = ya/2q, A = Llf(0), C = -kBg(O) and D = -Btkf(O) (13) 

and 

f ( 0 )  = [(tanh 0 - H sech2 @ / ( I  + sech2 O ) ]  (14) 

(15) g ( 0 )  = l / ( l  + 0’ sech2 0) 
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252 H. VANOENE 

the parameter 8 = kh, with h the thickness of the film; a is the amplitude 
of the disturbance, y the surface tension and q the viscosity. When the free 
surface is represented by the real function y = --a sin kx, the velocities are: 

u = Bk cos kx[ ( l  - g(8)) cash (ky)  

- f (8 )ky  cosh (ky)  - g(8)ky sinh (ky)]  (16a) 

u = Bk sin kx[sinh ky + f(0) cosh ky 
- f (0)ky sinh k y  - g(0)ky cosh (ky)]  ( I  6b) 

For the case h = 1, 0 = 2n, these velocities are plotted in Figure 2, 3. These 
velocities are interesting in themselves. At the crest of the corrugation the 

FIGURE 2 Orchard model, schematic. The arrows indicate the directions of the bulk 
Row. 

velocities are downwards, at  the trough of the corrugation upwards, ne ver- 
theless no “cells” exist. It is also seen that most of the bulk motion is c on- 
fined to a surface layer about $ wavelength thick. The rate of leveling c a n  
be obtained from the surface velocities directly, or by calculating the me a n  
flow through the nodal planes at kx  = 0 and 7112. Either way one finds: 

da 
d t  
- -  - - U k j ( O )  = - (B/h)!f(O) 
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FIGURE 3 Velocities calculated from the Orchard model. The length of the arrows is 
proportional to the magnitude of the velocity. 

where a,, is the initial value of the amplitude. The energy dissipation, due 
to viscous flow is given by": 

O n  

2b' = j d(kx) rl (ky)  
k 2  

- 0  0 

where 
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2 54 H. VANOENE 

Integration yields: 
2F = t xB2k2q[2f (8)  + ( 2  - 2g(0) + (202 + l)(g2(0) + f 2 ( 0 ) )  + 40f(O)}sinh20 

- {2 f (o )  + 2 o p ( e )  -+ 40g(0) - 20gqe) + 4e2~--(0)~(0)) cash 203 (20) 

2F = nB2k2q[ l  - e-20{202 + 20 + l}] (21) 

When 0 2 2ng(0) = f(d) = I ,  the integral reduces considerably, and: 

for sufficiently large 6'; therefore, one obtains : 

2F z nB2k2q 
hence 

2 F  = ( $ ) 2  

In this limit the energy dissipation is indeed proportional to the square of 
the surface velocity. In  the limit of sinall 0, i.e. large wavelengths one obtains: 

2F M $nB2k203 z nB2k2q f (0)  (24) 

hence for 0 -+ 0 

In general the energy dissipation is not proportional to the square of the 
surface velocity or rate of leveling. For A 5 h an equation of this type, 
however, is obtained. 

DISCUSSION 

The hydrodynamic characteristics of free surface flows may be readily 
deduced from Orchard's theory. When 0 9 2n, i s .  A I / I  the surface velocity 
is only dependent on the wavelength of the disturbance, but independent of 
film thickness. In addition, the viscous dissipation is proportional to the 
square of the leveling velocity. Since the rate of decrease of arc length- 
which replaces surface area in a two-dimensional theory-is proportional 
to h / d t  one could construct a Frenkel type theory for the magnitude of 

Since sintering involves the motion of a free surface only, a Frenkel type 
theory may indeed be justified for this flow. Such a theory, however, should 
not be applicable to spreading over a substrate. Due to the presence of a 
fixed boundary, the thickness/wavelength ratio 0 is increasingly important 
as the wavelength of the disturbance becomes larger than the thickness of 
the fi lm. As will be justified subsequently, one may take 0 i n  drop spreading 

dU/Cl t .  
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SINTERING, SPREADING, LEVELING OF FLUIDS 255 

to be given by the expression: 6’ = 2rr(&h/4R) = (rr/4)(1 - cos 4),  where 4 
is the contact angle. Hence for 4 5 90°, 6’ < 2n, which indicates that the 
solid substrate retards the motion. 

Regardless of the detailed boundary conditions, the hydrodynamic theory 
leads directly to the commonly observed fact of superposition with respect 
to the ratio 7/11. 

The theoretical discussion may be summarized as follows : Free surface 
flows are characterized by relationships of the type: 

surface velocity CY ylqLf(6’) 
where L is a scaling length, the wavelength of the disturbance, and f(0) a 
function determined by the hydrodynamic boundary conditions, independent 
O f Y / ? .  

Comparison wi th  experimental results 

Sintering. In Figure 4 the data of Manson and co-workers’ are plotted in  
reduced form. The drawn line represents the theoretical results obtained by 
numerical integration of equation 6. The shift factors obey the WLF equation 
for polymethylniethacrylate, hence confirming superposition with respect to 
viscosity. The quantitative comparison of initial slopes and those calculated 
by means of equation 7, reveals agreement to within a factor of two. This 
may reflect either experimental error or a deficiency in theory. The possible 
influence of viscoelasticity will be discussed separately. 
Drop Spreading. Our earlier work” revealed already good qualitative 
agreement with the hydrodynamic features of the flow of liquid films, 
provided the “equivalent” thickness of the film was not specified. The 
equivalent thickness was found to depend on the time dependent contact 
angle 4. The initial spreading rate dr/dt turned out to be given by: 

1 1 
- (d~/dt) , , ,  = - ( d h / ~ I t ) , . + ~  = 0.063 Y/ilRO . cos $m . 
RO Ro 

The theory of Orchard does not deal with the spreading rate, but the 
decrease in height, which according to Eq. 18 is given by: 

In h/R, = - -+(y /qh)Qf(O)  . t (27) 
In the drop spreading experiment the Orchard parameter 0 decreases with 
time, but it also implies that, regardless of the particular value of 0,  the 
decrease for each particular value of 0 is still exponential with time. Hence 
for each point a value of the function Uf(0) may be calculated. An experi- 
mental check on the theory is then possible provided 0 can be calculated 
independently. Some caution is, however, in order, since the hydrodynamic 
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0.01. 

- - 
- 
- 
- 

- 

I I I I I I l l  I I I I I I I I I  I I I I I I l l 1  

FIGURE 4 Sintering curve for Lucite 40, reduced to T = 148 (Ref. 7). 
Legend : rn T =  200" c 

0 T =  178OC 
0 T =  168OC 
A T -  148'C 

Curve I a pviori Frenkel prediction for T = 148, obtained by integration of equation 8 
I1 reduced curve described by the high temperature data 

111 experimental curve obtained at  T = 148 
The displacement of curve I1 and Il l  may be a visco-elastic effect. 

treatment is only a two-dimensional theory, hence exact quantitative agree- 
ment cannot be expected. It turns out, that initially quantitative agreement 
can be obtained if the ratio (y/qh) is taken to be given by y/qR,, hence: 

IL 
0 = - (1 - cos 4) 

4 

In this form the equations may be directly compared with experimental 
data. The data in reference 11  were all reduced to  the experimental data 
for the sample DYLT a t  120°C. Only the data for this sample will therefore 
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SINTERING, SPREADING, LEVELING OF FLUIDS 257 

be used. It is found that for:  t = 180 sec., y/qRo = 5.36 x lo-’, 6, = 72“, 

The function ef (0 )  as calculated from equation 28 is equal to 0.035. From 
Table I this implies a value of 0 equal to 0.53. The independently calculated 

TABLE I 
Values of 8 and O f ( O )  

8 Sf(8) e Of 8 8 Sf 9 

.80 ,1277 .60 .0526 .40 ,0133 

.79 ,1231 .59 ,0498 .39 .0121 

.78 ,1185 .58 ,0471 .38 .0110 

.77 ,1140 .57 ,0445 .37 .0100 

.76 ,1097 .56 ,0420 .36 .908 E-2 

.75 ,1054 .55 ,0396 .35 ,820 E-2 

.74 ,1012 .54 .0372 .34 ,738 E-2 

.73 ,097 I .53 ,0350 .33 ,661 E-2 

.72 ,0931 .52 .0328 .32 ,590 E-2 

.71 .0892 .51 ,0308 .3 1 ,525 E-2 

.70 .0854 .50 .0287 .30 .465 E-2 

.69 ,0817 .49 ,0269 .29 ,410 E-2 

.68 ,0781 .48 .0250 .28 .359 E-2 

.67 ,0746 .47 ,0233 .27 .313 E-2 
,272 E-2 

.65 ,0679 .45 .0201 .25 ,234 E-2 

.64 ,0646 .44 ,0185 .24 ,200 E-2 

.63 ,061 5 .43 .0171 .23 ,170 E-2 

.62 ,0584 .42 ,0158 .22 ,144 E-2 

.61 ,0555 .4 I .0148 .21 .I20 E-2 
.20 ,995 E-3 
.10 .655 E-4 

h / R  = 0.843, ( 1  - cos 6,) = 0.691. 

.66 .07 12 .46 ,0216 .26 

value of 0 is equal to 0.54. The parameters have therefore been chosen in a 
consistent fashion. When 4 + go”, t -+ 0, 0 --+ n/4, hence Of(0) = 0.12 
(Table I). The proportionality factor for the initial rate is therefore 0.06, 
again in good agreement with the experimentally observed value 0.063. At 
intermediate angles, say 6, z 45, the experimentally determined 0 is about 
twice the value calculated directly. At long times these equations predict 
velocities of the order of 10-5-10-6 cmisec, which are distinctly too small. 
The influence of gravity has however been ignored. This influence can, 
fortunately, be calculated exactly by means of a recent analysis of Smith” 
who treated the rate of spreading of a viscous sheet of liquid confined, 
initially, at the origin of the coordinate system. The rate of spreading is 
found to be given by: 

d(r/Ro)/dt = 0. 13(gRo/v)”st-7’s (29) 
where r is the spreading distance; g, the acceleration due to gravity; R,, 
the initial radius of the drop and 11, the kinematic viscosity. At long times 
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258 H. VANOENE 

the experimentally observed spreading data may be fitted by an expression 
of the form’ : 

1 1 
- I +- 

cos 4 k t  
-- 

which for large kt leads to: 

d(r/R,)/dt = 0.206k’’6t-5’6 

The experimental exponent 0.83 is close to the theoretically predicted value 
of 0.87, the more so since the experimental value is implied by the form of 
the function chosen to represent the time dependence of cos 4. The absolute 
values of the velocities may now be calculated and compared. The results 
are: (for the sample DYLT and t lo4 sec.) 

T 120 140 160 
velocity ( x  lo4) eqn. 29 0.25 0.28 0.30 
velocity ( x  lo4) eqn. 31 0.19 0.34 0.36 

The velocities calculated from Orchard’s expression would be of the order of 
cmlsec. The effect of gravity may therefore certainly not be neglected. 

In summary, the kinetics of sintering and spreading of homogeneous 
liquids can be adequately described within the framework of the theories 
outlined. Hence more complex phenomena such as observed during free 
surfaces flows of heterogeneous fluids (mixtures) can be analyzed. Experi- 
mentally one observes a considerable amount of phase separation, caused 
by the sintering and spreading processes. Since such phenomena involve 
the motion of the bulk as well as the motions at  the free surface, the preceding 
analysis indicates that the simple Orchard model may be a satisfactory 
starting point for further analysis. More detailed results will be presented at 
the meeting. 
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